

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5. Issue 4. April 2016

Secret Sharing Scheme using Cryptographic Techniques

Pratiksha Patil¹, Nilesh Javre², Priyanka Patil³, Sarang Deshpande⁴

UG Students, Department of Computer Engineering, SSBT's College of Engineering and Technology,

North Maharashtra University, Jalgaon, Maharashtra, India^{1, 2, 3, 4}

Abstract: From many years, people were concerned about the secure transmission of data. Among the various cryptography techniques, the Adi Shamir's secret sharing scheme based on La-grange's polynomial is considered as the most secured one. But, it faces the man in middle attack in which an adversary can retrieve the secret even without any valid share. To over-come this drawback, the token generation mechanism is proposed in which each valid share is binded with the public information of all the nodes. The proposed system consists of Adi Shamir's secret sharing scheme based on Lagrange's polynomial along with the concept of Token Generation. Token Generation mechanism involves binding of shares with their respective shareholders. Due to this the intruder will not be able to retrieve the secret if he does not have a valid share. Thus, one can conclude that the proposed system provides better security than the traditional one.

Keywords: Security, secret sharing scheme, public information, token.

I. INTRODUCTION

Secure transmission of data plays a very vital role in intruder tries to recover the secret without having a valid today's era. There are various cryptography techniques for share, the intruder will not be able to retrieve the secret. such secure transmission. Among the various algorithms The proposed system involves the traditional Adi Shamir's and concepts, the Adi Shamir's secret sharing scheme, is Secret Sharing Scheme along with the concept of token the securest one. The Adi Shamir's secret sharing scheme generation. The token generation mechanism enhances the depends on Lagrange's polynomial for dividing the secret security of the traditional secret sharing scheme. into number of shares. There are n shareholders, and a dealer D. The scheme consists of two algorithms:

- With knowledge of any't' or more than't' shares can reconstruct the master secret 's'.
- With knowledge of fewer than't' shares cannot get any information about the master secret's'[1].

People have failed to notice, however, an adversary or intruder may obtain the secret without any valid share. This creates man in middle attack in the existing system. In the Man in Middle Attack, an adversary without any valid share may obtain the secret if there are over't' participants in the secret reconstruction. Therefore to overcome this drawback, the concept of token generation is proposed. Token generation mechanism involves binding of shares with their respective shareholders. Because of this, only the authenticated shareholders can obtain the secret whereas, the intruder will not be able to retrieve the secret, without any valid share.

Α. Motivation

The existing Adi Shamir's Secret Sharing Scheme is prone to the Man in Middle Attack, due to which the security of secret or message transmission is not ensured.

The security of transmission of the secret can be ensured by the introduction of a token generation mechanism. Token binds the shares with their valid shareholders. Hence, each shareholder or authenticated node of the Sharing Scheme. The concept of token generation is group has a token attached with it. Due to this, even if an

II. LITERATURE SURVEY

The content of the paper focuses on the research and contributions of various sources. These include:

[1]The paper describes the basic (t, n) secret sharing scheme and the attack to which it is prone. The share generation and share reconstruction concepts are discussed in detail. The existing secret sharing scheme faces a drawback if an adversary is able to retrieve the secret, even without a valid share. The paper proposed the concept of randomized component which binds the shares with their particular shareholders. Due to this, the adversary is not able to recover the secret as it is not having a valid share and is not binded with the share.

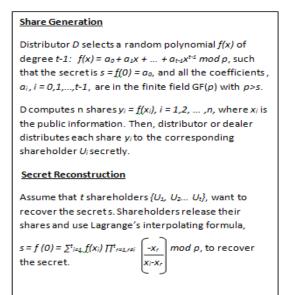
[2]The paper discusses the Adi Shamir's secret sharing scheme in detail. The paper describes how the shares are split at the distributor end and how they are reconstructed at the receiver end. Various cryptographic encryption algorithms are also described in the paper. The concept of Lagrange's polynomial and its use in the Adi Shamir's secret sharing scheme is also discussed in detail.

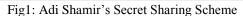
[3]The paper describes the basic concept of group authentication and secure transmission of secret in a group. It includes a review of Shamir's (t, n) Secret discussed in the paper. The paper also describes the share

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 4, April 2016

generation, token generation, secret reconstruction and The existing system involves the division of secret into a group authentication in detail along with the concept of number of shares equal to the number of nodes in the Lagrange's polynomial.

Authors	Description	Limitation
Miao Fuyou, Xiong Yan, Wang Xingfu, and Moaman Badawy	The paper describes the basic (1,n) secret sharing scheme and the attack to which it is prone. The share generation and share reconstruction concepts are discussed in detail. The existing secret sharing scheme faces a drawback if an adversary is able to retrieve the sacret, even without a valid share. The paper proposed the concept of randomized component which binds the shares with their particular shareholders. Due to this, the adversary is not able to recover the secret.	The randomized component method makes the scheme more complicated as each participant needs to be authenticated by another one.
Siyaram Gupta and Madhu Sharma	The paper discusses the Adi Shamir's secret sharing scheme in detail. The paper describes how the shares are split at the distributor and and how they are reconstructed at the receiver end. Various cryptographic encryption algorithms are also described in the paper.	The paper involves only the analysis of various encryption algorithms.
Lein Harn	The paper describes the basic concept of group authentication and secure transmission of secret in a group. It includes a review of Shamir's (1,1) Secret Shamiry Scheme. The concept of token generation is discussed in the paper. The paper also describes the share generation, token generation, secret reconstruction and group authentication in detail along with the concept of Lagrange's polynomial.	The scheme should be able to work properly for various size m (i.e., tSmr) of users participating in the authentication.


III. PROPOSED SYSTEM


The proposed system is a solution to the Man in the Middle Attack. Man in the Middle Attack can be resolved by introducing the concept of token generation into the existing Secret Sharing Scheme. Due to token generation for each shareholder, the intruder will not get the token from the distributor, thus the secret cannot be retrieved by the intruder.

A. Problem Definition

Secure transmission of data across a network is a necessity in today's era. Among the various cryptography mechanisms, the Adi Shamir's Secret Sharing Scheme (SS Scheme) is the most secured one and hence is widely used. The Adi Shamir's secret sharing scheme depends on Lagrange's polynomial for dividing the secret into number of shares. However, an adversary or intruder may obtain the secret even without any valid share. This creates Man in Middle Attack in the existing system. Therefore, to overcome this drawback, the concept of token generation is proposed. Token generation mechanism involves binding of shares with the respective shareholders. Because of this, the intruder will not be able to retrieve the secret, without possessing a valid share. The main objective of the proposed system is to provide a more secure transmission of data in a network consisting of a group of nodes. Along with secure transmission of data, the proposed system also focuses to tackle the Man in the Middle Attack, so that an intruder will not be able to retrieve the secret without any valid share.

group. Among all the nodes, a fewer i.e. t of them can recover the secret. But less than t nodes are unable to recover the secret.

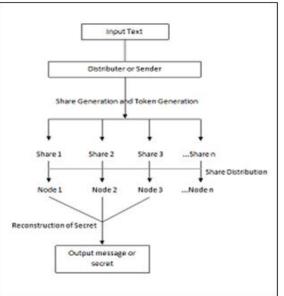


Fig2: Proposed System Architecture

However, more than t participants can recover the secret. Due to this, an intruder can attack and intervene as a participant to reconstruct the secret. Thus, it is prone to the Man in Middle Attack. To solve such an attack, the concept of token generation is proposed. All the shares are attached with the tokens generated by the distributor. Hence, each share is binded with the shareholder with the help of token. Thus, an intruder will not receive the token and hence is unable to reconstruct the secret. The token binds the share with its shareholder as well as helps in secret reconstruction. Therefore, the proposed system provides better security as compared to the traditional secret sharing scheme.

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 4, April 2016

IV. IMPLEMENTATION

Implementation of the proposed system involves the environment in which the system is implemented and the overall system development. The overall development of the proposed system requires suitable environment and proper resources for its successful completion. The proposed system is developed for a client-server communication. At the server, the secret is divided into a number of shares. These shares are then distributed to the clients along with the public information. At the client, the received encrypted string is decrypted and again the shares are generated. These shares are then combined in order to reconstruct the secret.

A. Flow of system development

The proposed system involves the transmission of secret or message from a server to multiple valid clients. Fewer of the clients can sit together in order to reconstruct the secret. At the server, a random prime number, which is larger than the secret is chosen and the Lagrange's polynomial for the secret is formed. The secret is then divided into number of shares, equal to the number of shareholders. The shares are then encrypted using the public information and hence resulting into the tokens. These tokens are then sent to the multiple clients or shareholders over a network through UDP. At the client side, the encrypted token is received. This token is then decrypted by using Lagrange's polynomial and a random prime number. The evaluation of the polynomial then generates the shares. The generated shares are the combined to reconstruct the secret.

V. RESULTS

At the distributor end, the secret in the form of number, string, special character or a combination of these is converted into a BigInteger. A random prime number is then chosen which is greater than the secret. The prime number along with the BigInteger secret is used to form the Lagrange's polynomial. The polynomial is then used to generate the shares, equal to the number of participants in the network.

TABLE II	RESULT FOR	DISTRIBUTOR	OR SENDER

	Splitting of shares at Distributor end		
Name	VALUE		
Secret	Welcome @ SSBT's COET.		
Secret converted to BigInteger	3 2 6 9 8 7 9 4 9 2 0 4 8 8 0 0 3 5 5 4 0 7 2 8 2 7 6 7 7 5 9 0 7 6 9 3 6 9 9 4 2 4 3 8 9 0 2 5 8 4 3 6 6		
Random Prime Number	81584600216955345174549280691003160342804928739852473		
Secret Share Number 1	66725284693494851168970729121025049990222479004515279		
Secret Share Number 2	19167174249546353609319349873456170267697590366593719		
Secret Share Number 3	53193664022553201224217251316890450887977630468524632		

At the time of distribution of shares, the secret is again split in order to regenerate the shares so as to send it to the receiver. Along with the shares, the public information, also called as token is also sent through the User Datagram Protocol.

TABLE III RESULT FOR DISTRIBUTION OF SHARES III
TO SHAREHOLDERS

Shares to be sent to the Receivers		
NAME	VALUE	
Random Prime Number	81584600216955345174549280691003160342804928739852473687738	
Secret Share Number 1	62997052844494282875418794402865500038990872691687738	
Secret Share Number 2	11710710551545217022215480437137070365234377740938637	
Secret Share Number 3	42008968475551496343561447162411801034282811530042009	
Server send Packet with Message	[LPrj.SecretShare;@863399	

At the receiver end, the encrypted message containing the token and shares is received. This received string is then used along with a new random prime number to generate the Lagrange's polynomial. The shares are then regenerated. By combining fewer of the shares (i.e. t shares), the secret message is reconstructed. The results for receivers 1 and 2 are shown in the following tables.

TABLE IV RESULT FOR SHAREHOLDER OR RECEIVER 1

Socket 1 Received Message Random Prime Number	[LPrj.SecretShare;@8633993 289956148309886381415046276246782967289652903301878 170853110979934018807613714226375355934946583381 5504667025506273156145115820741146533721001059116713
Message Random Prime	1708531109799334018807613714226375355393439465833814
Random Prime	1708531109799334018807613714226375355393439465833814
Prime	1708531109799334018807613714226375355393439465833814
Number	8504967075506773156145115820741146533771001050116710
	050450702550027515014511502074114055572100105511071
	354506425841586878550813213280331757530418005685848
	700008806929325190928721206659315031690787816375679
	371620475524746209676940270301240140751018875186728
	517510236884413099742136284987590125049766281641233
	1287910135861610255315928208925985
Secret	2592546551413866250279631795461618362588560171914754
Share	4961492916275799037470838159656196331817021552992593
Number 1	7194561796078376709640862143569719588581625195708556
	0809598916198048863861891628160251009785441008683924
	191595598762679672909360940123508473441981871255353
	729574500962245668606441903165391572370015947879890
	8673542579138543495757993537603095606706333631642243
	9231094746967065074160047373074241
Secret	118225699264797699778673674770024582678513274932094
Share	253844333835339636914279979975110429049444199657668
Number 2	098181174394909021418486612691381955637266498192094
	7059941317258492322702727658841633764396266209885264
	2324100567895290144847817692539099951036828371341870
	589480401274972109159994007541721682838151629987365
	2029554025995392534148952115507140535006321750731364
	8731576536410571201559154895387337
Secret	267152891698095155944430446240670296387823435974590
Share	182392487023032771962237515407238760456530190599458
Number 3	327402871732607687487398593099906605788470582725005
	685534797673480456705169582232633409431127146794508
	9732333217457035469889238050436265484561716193886998
	821006777112444759390486382219291934057306187281568
	0560667841696372569961273543287086713803972686232819
	9519968461715687584274190626626419
Reconstructing Secret	

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 4, April 2016

TABLE V RESULT FOR SHAREHOLDER OR RECEIVER 2

	Receiver 2 Connected	
NAME	VALUE	
Socket 2	[LPrj.SecretShare;@8633993	
Received		
Message		
Random	2191152875748094975006480096598742621964927974577066	
Prime	2109574912834020832737651485905644724975179348471391	
Number	1770913274183685797834356790159354314830415462073401 7238017431788314007325283003001674638956049113605605	
	4948255750119588896947769317987267054034834304013533	
	4948255/5011958889694/769517987267054054854504015555 3411314139348761525269695447452821739542730620417744	
	3076614411252434863669826526757128861149275359654497	
	770250317827811825637000681065296540	
	//025051/82/81182505/00081005250546	
Secret	1205587061929567070667258206755607516556774503386930	
Share	6017913595212699955129795423524794189664245574237117	
Number 1	2869978148057775752140862984391831698646691810838849	
	4128408350829178878461899245326242136680744284082456	
	6092291946067958072116251860483742534762512972328061	
	9118455200151995666573808125272459942431268090605965	
	9697633429633857258635503342547850161497736602065993	
	503491301230103017894532834586491307	
Secret	1307899496778242452712452332756053807618090445284072	
Share	2468226051985513141560464566516097077553874984116765	
Number 2	4190932847888537603792208545388818666422687778173904	
	3495802509401636020304285567187808722681618132414289	
	1177133119802109639092098502063151277604936451567122	
	9828660595491478855845778655592071102730421095072873	
	3708036716838951079707546739423590499846045295449290 866193818033177819169578754722866197	
	8001938180331/7819109378734722800197	
Secret	1410211931626917834757646458756500098679406387181213	
Share	8918538508758326327991133709507399955443504393996413	
Number 3	5511887547719299455443554106385805634198683745508959	
	2863196667974093162146671889049375308682491980746121	
	6261974293536261206067945143642560020447359930806184	
	0538865990830962045117749185911682263029574099539780	
	7718440004044044900779590136299330838194353988832588	
	228896334836252620444624674859241086	
Reconstructing Secret		
Secret	Welcome @SSBT's COET.	
Jacret	mercome good s cour.	

The proposed system provides better reliability, integrity and security as compared to the existing system.

VI. CONCLUSION

Secure transmission of data is a necessity in the networks. The existing secret sharing scheme is prone to the Man in Middle attack, thus the proposed system is developed to overcome the drawback. Therefore the proposed system involving token generation mechanism provides better reliability, integrity and security than the existing one.

The system can be further extended for the secure transmission of image, audio and video data through various image processing techniques.

REFERENCES

- Miao Fuyou, Xiong Yan, Wang Xingfu, and Moaman Badawy. "Randomized component and its application to (,)-group oriented secret sharing". "Information Forensics and Security, IEEE Transactions", 10(5):889-899, 2015. (Research Paper)
- [2] Siyaram Gupta and Madhu Sharma. "A python based enhanced secret sharing scheme to secure information using cryptography techniques". "International Journal of Advanced Science and Technology", 71:15-30, 2014. (Research Paper)
- [3] Lein Harn. "Group authentication". "Computers, IEEE Transactions", 62(9):1893- 1898, 2013. (Research Paper)

- [5] Rivest, Ronald L., Adi Shamir, and Yael Tauman. "How to share a secret."Communications of the ACM. 1979.
- [6] Yang, Chou-Chen, Ting-Yi Chang, and Min-Shiang Hwang. "A (t, n) multi-secret sharing scheme." Applied Mathematics and Computation 151.2 (2004): 483-490.